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Multi-affine analysis of typical currency exchange rates
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Abstract. For foreign currency exchange rates, multi-affine analysis can put quantitatively into evidence
the differences between correlated (daily closing market) values and random walks in time dependent data.
The H(q) spectrum is presented and discussed here for the USD/DEM and JPY/USD exchange rates.
The time-evolution of these ratios is found to be multi-affine. The h(γ)-curve describing the hierarchy of
exponents is numerically obtained. Our findings suggest that the modelling of exchange rate time-evolution
from day to day is possible within the framework of modern statistical physics and related to models of
turbulence in the physics of fluids. Finally, we argue that there is a multiplicity of information levels in
the foreign exchange market such that the “efficient market theory” is a crude oversimplification indeed.

PACS. 05.40.+j Fluctuation phenomena, random processes, and Brownian motion – 01.75.+m Science
and society

1 Introduction

It has been recently debated whether physicists could be
involved in financial affairs, whether physical ideas, meth-
ods and models would be beneficial to financial life [1].
The best answer to the first question is outside the scope
of this journal, but the second question can find an inter-
esting answer if ideas, methods and models are proved to
be sound not only with respect to data analysis but also
predictability – a key element in economic planning. Text
books presenting high level or general mathematics for fi-
nancial derivatives and the like exists already [2]. However,
much should be expected from the basic physical concepts,
e.g. scaling, fractal phenomena, self-organization, etc. In
fact, the scope of statistical physics has widened tremen-
dously and its technical methods have already penetrated
into a number of fields beyond the traditional boundaries
of physics, i.e. towards biology, ecology, geology, meteo-
rology, etc. [3,4].

Problems in economics and finance have started to
attract the interest of the statistical physics community.
These problems concern e.g. the minimization of the risk
for put and call options [5], the analysis of data near eco-
nomic crashes like that of Oct. 19, 1987 [6–9], the search
for forecasting [10], the analysis [11] and modeling [12] of
company growth...

A fundamental problem is the existence or not of long-
range correlations in currency exchange rates, e.g. the
USD/DEM ratio, or in economic indices like the Standard
and Poor 500 (S&P500) index.

Various statistical methods have been used in order
to measure temporal correlations in financial data. Tradi-
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tional methods (like spectral methods) have corroborated
that there is evidence that the Brownian motion idea is
only approximately right [13,14]. Through a data analy-
sis based on the Lévy statistics, Mantegna and Stanley
[15] have shown the existence of a power law distribu-
tion of returns in the Standard and Poor index (S&P500).
Wavelet analysis of the same S&P500 index [16] and of the
USD/DEM currency exchange rate [17] have also demon-
strated the emergence of hidden substructures in such eco-
nomic signals. These investigations suggest that the eco-
nomic data evolve as self-affine functions on long time
scales, i.e. from a few days to more than one year.

For any (discrete) time-dependent self-affine function
y(t), we can choose a particular point on the signal and
rescale its neighborhood by a factor b using the rough-
ness (or Hurst [18]) exponent H by considering the sig-
nal b−Hy(bt). For the correct exponent value H, the sig-
nal obtained should be indistinguishable from the original
one, i.e.

y(t) ∼ b−Hy(bt). (1)

An exponent H < 1/2 involves an antipersistent behavior
while H > 1/2 means a persistent signal [18]. The simple
Brownian motion is characterized by H = 1/2 and white
noise by H = 0.

In the present report, we are interested in the “excur-
sion” of the signal y after any time period τ , i.e. in the
positive values |y(t) − y(t + τ)|. Neglecting any bias or
trend in the signal y, the “excursion” is simply related to
the variance σ of the signal around its average value. For
a self-affine signal, we have

σ ∼ τH . (2)
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More precisely, temporal correlations exist for H 6= 1/2.
Indeed, the correlation C of future increment y(t) − y(0)
with past increment y(0)− y(−t) is given by

C =
〈(y(0)− y(−t))(y(t)− y(0))〉

〈(y(t) − y(0))2〉
= 22H−1 − 1, (3)

where the correlations are normalized. This relationship
assumes obviously that the distribution of daily fluctua-
tions (y(t+1)−y(t)) is symmetric with respect to its zero
mean value.

From the point of view of economic signals, a value of
H around 0.55 has been obtained for the USD/DEM ratio
[19]. A review of exponent values for other currency ratios
can be found in [20]. If different values of H are found in
different regions of the signal, there is a good chance that
the signal is multi-affine rather than self-affine [21]. These
multi-affine signals can be described only in terms of an
infinite set of exponents and their density distribution.
Multi-affine signals are frequently described as turbulent,
because the local velocities in turbulent systems exhibit a
similar multiscaling behavior [22].

Through a Detrended Fluctuation Analysis (DFA) [19],
we have put into evidence that the nature of the cor-
relations (i.e. the H value) in the USD/DEM currency
exchange rate can change with time. As a consequence,
the USD/DEM evolution can be decomposed into suc-
cessive persistent and antipersistent sequences [19] and
multi-affine behaviors can be expected. More recently, it
has been reported that the foreign exchange market effec-
tively produces multi-affine signals [23–25].

In the present work, we perform a careful and more
complete multi-affine analysis of the USD/DEM and
JPY/USD exchange rates, and we give for the first time
the so-called h(γ)-curve (see below) for such economic sig-
nals.

2 Multi-affinity

A method for determining the multi-affinity of a time-
dependent signal y(t) is the so-called “q-th order height-
height correlation function” [21] defined by

cq(τ) = 〈|y(t)− y(t′)|
q
〉τ , with τ = |t− t′| (4)

where only non-zero terms are taken into account in the
average 〈.〉 over all couples of points (y(t), y(t′)). In fact,
this measure takes the various moments q of the excursion
of the signal. Assuming a power law scaling for the corre-
lation function, the exponent H(q) is defined through the
relation

cq(τ) ∼ τqH(q). (5)

The signal y(t) is multi-affine if H(q) is a decreasing func-
tion of q [21]. For a self-affine signal, the H(q) exponent
is independent of q and is equal to the Hurst exponent
of the signal. For a Brownian motion, the spectrum is
expected to be H(q) = 1/2 for any q > −1 and to di-
verge for q < −1 [21]. One should note that the spec-
trum H(q) is not defined for q = 0. If the signal y(t) has

Fig. 1. The evolution of the USD/DEM exchange rate from
Jan. 1, 1980 to Dec. 31, 1996.

Fig. 2. The evolution of the JPY/USD exchange rate from
Jan. 1, 1980 to Dec. 31, 1996.

too small height differences, one cannot calculate numer-
ically the negative powers of cq(τ) since the average of a
negative power of a very small number leads to a diver-
gence. But in most cases, the positive moments (q > 0)
strongly indicate whether the time-series is multi-affine or
not [21,26].

3 Data

In the present case, y(t) will be taken as the closing values
at successive open banking days recorded in Brussels [27].
Figures 1 and 2 present respectively the evolution of the
USD/DEM and JPY/USD exchange rates from Jan. 1,
1980 to Dec. 31, 1996. Week-end and holidays being non-
banking days, only ≈ 261 data points are considered each
year. Thus, about 4400 points are considered for each cur-
rency in the period investigated herein, covering 16 years.
Let us point out that a possible week-end effect should
not affect our results since small periodic events are av-
eraged in equation (4) and do not change the measured
value of H(q).
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Fig. 3. The H(q) spectrum for the currency exchange rates
of Figures 1 and 2. Error bars are indicated. The continuous
curve corresponds to the theoretical spectrum for a random
walk.

4 The H(q) spectrum

Figure 3 presents the H(q) spectrum for the two currency
exchange rates corresponding to Figures 1 and 2. Error
bars are indicated for a few points in order to bring re-
liance to the discussion. One should note that the results
for q < 0 lead to large uncertainties so that the numerical
analysis is somewhat less relevant in this part of the spec-
trum at this time. A recent progress [28] has been made
in order to obtain the negative moments of physiological
signals. The latter technique is a modified wavelet analysis
which will provide the measure of the negative moments
in future work. In order to emphasize the typical uncer-
tainties of the present technique, Figure 3 presents also
the H(q) spectra for a random walk (Hq = 1/2) of 4000
steps (continuous line). The random walk as well as self-
affine signals made of 4400 points present all this small
negative slope in the measured h(q) spectrum. This is due
to a finite-size effect.

The first observation to be made is that the spec-
trum H(q) varies strongly with q for such exchange rates
involving the USD. These huge variations of H(q) are
much larger than the finite-size effect such that they are
not artefacts. Thus, the time-evolution of these currency
exchange rates is clearly not self-affine but multi-affine.
Therefore, there is a hierarchy of exponents characteriz-
ing the correlations in the economic system as for devel-
oped turbulence [22] in the physics of fluids. This was also
suggested in [25].

5 The hierarchy of exponents h(γ)

The hierarchy of exponents can be modelled as follows.
In order to rescale a multi-affine signal y(t), one should
use different scaling factors H(q). Let us define the lo-
cal scaling exponent γ in order to characterize the local
singularity of the y(t)-signal

|y(t)− y(t+ τ)| ∼ τγ , (6)

Fig. 4. The h(γ)-curve for both currency exchange rates of
Figures 1 and 2. Error bars are indicated.

so that γ acts as a local roughness exponent of the y(t)
signal. One can define the number of points N(γ)dγ that
have an exponent in the range (γ, γ + dγ). Such a density
is assumed to scale with the time span τ used to probe
the signal,

Nγ(τ) ∼ τ−h(γ) (7)

like in multifractal objects [29]. The function h(γ) is in
fact the fractal dimension of the subset (like a Cantor dust
[4,18]) of points having the same roughness local exponent
γ. If the signal is self-affine, the local exponent γ is the
same on every point such that h(γ) = 1. From [30], the
following relations are found

γ(q) =
d(qHq)

dq
(8)

and

h(γq) = 1 + qγ(q)− qHq. (9)

The h(γ) function is naturally adapted to describe mul-
tiaffine signals as the function f(α) describes multifrac-
tal objects [29]. However, the h(γ)-curve is not identi-
cal to the f(α)-curve. The f(α)-curve can be calculated
from the h(γ) function following some transformations
fully described in [30]. However, the h(γ) function is nat-
urally better suited to describe multiaffine signals than
f(α) [21,26,30].

The h(γ)-curve is drawn in Figure 4 for the two cur-
rency exchange rates analysed herein. Error bars are in-
dicated. They are estimated following standard statistical
data analysis [31]. The curves reach a maximum fractal
dimension h = 1 for a γ0 value which depends on the
analyzed currency. The value γ0 represents the Hurst ex-
ponent H value that one can calculate by considering y(t)
as a simple self-affine signal and neglecting the hierarchy
of exponents. Thus, γ0 represents a kind of a “zero-order”
roughness exponent. Table 1 gives the values of γ0 for
the exchange rates analyzed. The value obtained for the
USD/DEM ratio is consistent with thecoarse grained value
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Table 1. Values of γ0 and γmin characterizing the hierarchy
of exponents for both currency exchange rates studied in the
present work.

exchanging rate γ0 γmin

USD/DEM 0.57± 0.02 0.25 ± 0.06

JPY/USD 0.58± 0.02 0.27 ± 0.06

of H that we have obtained with the DFA technique [19].
The values of γ0 are quite close to values obtained in [24]
for the USD/FRF and JPY/FRF ratios.

The h(γ)-curves of Figure 4 seem also to vanish at
some γmin value. This value corresponds to the minimum
Hurst exponent contained in the y(t) signal. This exponent
can be found by extrapolating γ(q) for q → +∞. The γmin
values are listed in Table 1. The minimum Hurst exponent
found herein seems to be roughly 0.25.

Since γmin ≈ 0.25, there is no white noise (γ =
0) component for the currency exchange rates studied
herein. This value γmin ≈ 0.25 is surprisingly quite close
to the Hurst exponent values obtained with the DFA
method for European currency ratios like the DEM/BEF
or NLG/BEF ratios [20]. It should be also noted that there
exists a random (Brownian) component γ = 1/2 in each
case. One can observe in Figure 4 that the set of points
for the random component has the same fractal dimension
h ≈ 0.91 for both currency ratios.

One should also note that deterministic multiaffine
functions [26] are characterized by a cap-convex h(γ)-
curve (like −γ2) such that a γmax value can be also de-
fined. In the present case, the part of the h(γ)-curve con-
taining an hypothetic γmax > γ0 seems to be missing.
This is due to the fact that cq “fails to scale” for q < 0.
Thus, one cannot extract the whole h(γ)-curve. This find-
ing is quite similar to recent work on f(α)-curve of the
Diffusion-Limited Aggregation model (DLA) [32] or the
so-called self-similar left-sided multifractals [33].

6 Discussion

Hereabove, we have put into evidence the multi-affine
character of the evolution of currency exchange rates.
This strongly supports the idea that economic system de-
scription needs laws more complicated than simple powers
[34]. This also suggests that a physical modelling of cur-
rency evolution is possible within e.g. the framework of
the physics of fluid turbulence. The reader also interested
by the implications of our findings from the point of view
of the Lévy distributions can be referred to [24].

Moreover, we have obtained the h(γ)-curves which de-
scribe the hierarchy of exponents for “turbulent economic
excursions”. To our knowledge, it is the first time that
this curve is obtained for foreign exchange markets. By
analogy with the f(α) function for multifractals, h can
be formally associated to some quantity of information,
γ associated to a free energy and q to the inverse of a
temperature [35].

With respect to the present results, the information is
minimum for an antipersistent behavior γ = γmin and is
maximum for a persistent behavior γ = γ0.

Notice that in the Efficient Market Theory [36] beloved
by some economists, the argument goes that new infor-
mations occur stochastically, whence one should observe
(according to this theory) economic indices like currency
exchange rates follow random walk laws. In contrast, the
hierarchy of exponents herein put into evidence seems to
demonstrate that there is a multiplicity of information lev-
els, which could be taken into account in order to describe
whatever economical signal evolution.

7 Summary

The multi-affine method is useful for analyzing the na-
ture of high order long range correlations in economic
systems. The present work has demonstrated the multi-
affine character of the daily closing values of USD/DEM
and JPY/USD currency exchange rates on the Brussels
market. The h(γ)-curve describing the density of the data
local roughness has been extracted. This result suggests
that a physical modelling of exchange rate time-evolutions
is possible through e.g. models of turbulence. The non-
trivial h(γ) curve demonstrates by analogy with multifrac-
tal ideas that there is a multiplicity of information levels
such that the efficient market theory is oversimplified.

The powerfulness of the multi-affine analysis in detect-
ing non-efficiency can be implemented in various market
investigations for hedging positions of portfolios. Further
works should concern other currency ratios and other mar-
kets.
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